
CMSC 828A Final Report

Daeun Jung, Kyungyeon Lee, Evar Jones, Cemil Nureddin Vahapoglu, and Yoon Kyung Shon
{daeunj, kylee, ejones26, cemilnv, ykshon}@umd.edu

1 Introduction

Federated learning is a powerful technique used
in machine learning, which allows multiple clients
to be trained simultaneously on their own unique
dataset. It attempts to reduce communication costs
by alternating local training with global aggrega-
tion of model parameters without ever directly shar-
ing client data.

Synchronous federated learning is an algorithm
where the global model is aggregated from each
client’s model for every round. The underlying
assumption of this algorithm is that each client
sends their model once local training is complete
and then receives the updated global model. As a
result, the client may lose their trained local model
and obtain the global model, which may exhibit
lower performance than their model.

In FedAvg (McMahan et al., 2023), a global
model combines local stochastic gradient de-
scent (SGD) on each client with model averag-
ing to produce a more generalized global model.
FedProx (Li et al., 2020) can handle a hetero-
geneous federated environment by including a pe-
nalization term to prevent the local model from
deviating too far from the global model.

Rather than focusing solely on learning a global
model, we utilize a federated learning approach
which allows for the development of personalized
models for each client, while also creating a gener-
alized global model. This is achieved by providing
the opportunity to select the degree of updating.
Our contributions are as follows:

• We conduct extensive experiments and analy-
sis of our novel algorithmic framework using
the CIFAR-10 and CIFAR-100 datasets, ex-
ploring different hyperparameter search tech-
niques within a federated learning setting.

• Our experiments reveal that individually tuned
FedAvg and FedProx approaches exhibit limi-

tations, and performs worse than our algorith-
mic approach that essentially combines their
methods, while optimizing their hyperparam-
eters.

2 Problem Formulation

In our new federated learning approach, we im-
prove client selection and reweighing. We try to
find the hyperparameters that control the client and
global models formulated as follows:

min
α,β
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where,∀ i ∈ [m].

(1)

In federated learning, we typically have a global
model θ0, and local models θ1:m owned by each
client. The objective function is defined as the
sum of validation loss from each client model θj .
To regulate the aggregation of the client model
parameter, we assign two hyperparameter vectors,
α and β, to clients and global models.

The α vector serves as a weight vector of the
global model, which mediates when aggregating
the client model parameter. By maximizing effi-
ciency, the global model with the α vector regulates
the trade-off between all local losses, while β1:m
controls the trade-off between the local training
and global alignment. For instance, in FedAvg,
α can be set to 1

m or 1
pi

, where each client has pi
number of data, for unbalanced data.

Clients are given the freedom to choose how
much they will update between their trained lo-
cal model and updated global model by deciding
β. Unlike FedAvg, which prevents local model
trains from the global model, β manages both re-
parameterization and personalization. Therefore,
θ0:m can decide how much each model should be
updated based on α or β. This approach provides
greater flexibility and control for clients, enabling



them to personalize their models while preserving
the global model’s accuracy.

Our method is related to meta-learning algo-
rithms used in training neural networks that can
generalize to novel tasks. In federated learning,
we aim to develop both a personalized model and
a generalized global model simultaneously. Thus,
our objective function is to minimize the validation
loss of the clients. To achieve this goal, we care-
fully examine the hyperparameters for both clients
and servers. This is crucial because the initial hy-
perparameters significantly impact the performance
gains in federated learning compared to local SGD
training.

To set these hyperparameters, we utilized ran-
dom search and Bayesian optimization techniques.
These methods helped us to efficiently and effec-
tively find the optimal hyperparameters needed to
achieve the desired results.

3 Research Methods

Several methods have been developed to tackle hy-
perparameter searching, including a basic search
technique such as random search, as well as a more
automated search technique such as Bayesian opti-
mization.

Random search is a hyper-parameter optimiza-
tion that performs random sampling of hyper-
parameters from the search space. Since random
search does not depend the gradients of the objec-
tive function of the problem, it can be used for
non-continuous and non-differentiable functions
as well. However, the performance of the random
search highly depends on the structure of the search
space. Achieving a good configuration can be hard.
Therefore, different variants of random search are
proposed in the literature to have some structured
ways of searching although it is random. Those
variants are mostly depend on how to decide the
step size of the searching. Fixed Step Size Ran-
dom Search (FSSRS), Adaptive Step Size Random
Search (ASSRS), Optimized Relative Step Size
Random Search (ORSSRS) can be given as some
examples for those variants.

It has been showed that random search is more
time-efficient than grid search hyper-parameter op-
timization (Bergstra and Bengio, 2012). However,
it can also be computationally expensive when the
search space is large. In federated learning setting,
it can be run on each client to determine βi values in
equation 1 for each client. Additionally, it can run

on the central server for α values to achieve the best
global model θ0. Random search is more efficient
than grid search. However, neither of these tech-
niques learn anything from previous experiments
as the model’s training on one set of hyperparam-
eters is performed in isolation with the other set
of hyperparamters. Additionally, a high number of
hyperparameters could result in these techniques
becoming intractable or not feasible. These tech-
niques also require a lot of time and computational
resources. As a result, there is a lot risk in these
techniques, with the additional uncertainty that they
will give the best set of hyperparameters.

Bayesian optimization (BO) is a hyperparameter
search method that attempts to solve these chal-
lenges. It is a hyperparameter search technique
that uses the concept of Bayes theorem to guide
the search to minimize or maximize an objective
function. In BO, a surrogate model is built for the
objective and quantifies the uncertainty in that sur-
rogate using Gaussian process regression, and then
uses an acquisition function defined from this sur-
rogate to decide where to sample (Frazier, 2018).
After each experiment, the surrogate model learns
and becomes more confident in choosing the next
set of hyperparameters that should be experimented
with, resulting in a better performance.

Hyperparameter optimization approaches, such
as Bayesian optimization, have been investigated
before in federated learning systems. Federated
Bayesian optimization (FBO) was introduced to ex-
tend Bayesian optimization to the federated learn-
ing setting (Dai et al., 2020). Another study in-
vestigated a local hyperparameter optimization ap-
proach using Bayesian optimization, that in con-
trast to a global hyperparameter optimization ap-
proach, allows each client to have its own hyper-
parameter configuration (Holly et al., 2021). Al-
though general hyperparameter optimization has
been the subject of intense study, tuning hyperpa-
rameters can be especially challenging. Our work
attempts to extend these search methods as an ap-
proach to find optimal hyperparameters for better
client selection and reweighing.

Stochastic gradient descent (SGD) can also be
evaluated as the method to find α and β values in
equation 1 since gradient descent is an optimization
technique preferred highly for machine learning set-
tings. However, it should be noted SGD is used to
optimize non-constrained optimization problems.
Therefore, feasible set of the non-constrained prob-



lem should be obtained first with respect to the
constraints of the problem in equation 1. Then,
SGD should be applied on it.

In this work, we investigate the impact of these
hyperparameter optimization approaches using the
Cifar datasets, with a ResNet18 baseline.

4 Related Work

Several improvements have been proposed to
FedAvg (McMahan et al., 2023) address the
challenges of system heterogeneity and statistical
heterogeneity in synchronous federated learning.
However, this approach assumes that the data on
each device is the identically and independently
distributed(IID), which may not hold in practice.
To address this, FedDane (Li et al., 2019) is pro-
posed, which uses a data-dependent regularization
term to account for non-IID data in federated learn-
ing. FedProx (Li et al., 2020) extends FedAvg
by incorporating a proximal term that encourages
devices to remain close to their local model pa-
rameters. This method has been shown to improve
convergence speed and performance on non-IID
data. Another approach is to adjust the learning rate
based on the number of local iterations performed
by each device. FedAdapt (Wu et al., 2022) dy-
namically adjusts the learning rate based on the
local iteration count, and has shown to outperform
FedAvg and FedProx in a range of federated
learning scenarios.

Traditional methods of federated learning have
shortcomings when it comes to fairness and ro-
bustness. Robustness relates to the model’s ability
to maintain its performance even when there are
device failures or malicious actors attempting to
manipulate the training process.

The Ditto (Li et al., 2021), a multi-task learn-
ing objective for federated learning that provides
personalization leverages each device’s individual
data distribution to improve fairness and robust-
ness. This approach customizes the model for
each device based on its unique data distribution
and then aggregates the personalized models to
form a global model while retaining similar effi-
ciency and privacy benefits as traditional federated
learning. Finally, other works have explored the
use of personalized models in federated learning.
For instance, sketched updates (Smith et al.,
2017) proposed personalized federated learning,
which trains a separate model for each device us-
ing its local data. However, this approach requires

more communication and computation resources
than traditional federated learning.

Drawing upon previous research, we have devel-
oped a method to improve both personalization and
generalization by adapting the values of α and β.
Our approach bears similarity to Ditto, but dif-
fers in that we utilize a server solver to optimize the
global model using the FedAvg method. Instead
of assigning identical weights to each client, our
algorithm learns a global model that aggregates lo-
cally trained models with different weights, based
on the congruence of the global model. By updat-
ing two parameter vectors, our FL algorithm can
learn both personalized models using individual
data and a generalized global model.

5 Experiments & Results

5.1 Expected Results

The expected result of this study is to demonstrate
the improved performance of our proposed feder-
ated learning model, which combines the FedAvg
and FedProx algorithms. We compare the perfor-
mance of our model to both the FedProx and Fe-
dAvg baselines, as well as a local SGD model, in
order to evaluate its effectiveness.

We anticipate that our model will outperform
the baselines and show superior performance com-
pared to the local SGD model. This expectation is
based on the fact that our model incorporates the
strengths of both FedAvg and FedProx, leveraging
the advantages of each algorithm to enhance the
overall performance of federated learning.

Furthermore, we expect that our model’s perfor-
mance will be influenced by the values assigned
to the hyperparameters alpha and beta. We desire
larger alpha values for models with lower valida-
tion loss, indicating a higher weight assigned to
models that perform better. In contrast, for mod-
els with a smaller amount of data, we prefer larger
beta values. This preference indicates that clients
with fewer data prioritize the global model during
training rather than relying on personalized models.

5.2 Experiments Setting

Regarding the experiment setting, we conducted
synchronous Federated Learning using CIFAR-10
and CIFAR-100 datasets, which were allocated at
5 levels among the clients. This allocation scheme
aimed to provide a diverse and representative dis-
tribution of data across the participating clients.



Figure 1: Random search result using Cifar10 dataset

Figure 2: Random search result using Cifar100 dataset

For Baseline 1, we fixed the global round to 1
and conducted 200 local epochs, while in Baseline
2, we fine-tuned the learning rate, weight decay,
and momentum values to establish an optimized
performance baseline.

For Baseline 2, the number of global round is
20 and the number of local round is 20 during fine-
tuning process of learning rate, weight decay, and
momentum coefficients. For tuning of those hy-
perparameters, Optuna framework is utilized. The
maximization of the evaluation accuracy is consid-
ered for it.

By Optuna framework, 4 different hyperparam-
eter tuning processes are performed: FedAvg for
Cifar10, FedAvg for Cifar100, FedProx for Cifar10,
and FedProx for Cifar100. In each process, 100
trials are conducted to obtain a good configuration
of learning rate, weight decay and momentum. Ad-
ditionally, TPE Sampler and Median Pruner are
utilized for trials to be able to have time efficiency
during trials.

All code, data and experiments are publicly avail-
able at: https://github.com/daeun-j/
CMSC828A.git

5.3 Random Search Experiments

To implement the random search method, we first
randomly selected sigma and mu values based on
the Gaussian distribution. These values were then
assigned to both the client and the server, gener-

ating random alpha and beta values. By applying
the random search method, we obtained two sets
of optimal hyperparameter vectors, alpha and beta,
for the CIFAR-10 and CIFAR-100 datasets. For the
CIFAR-10 dataset, the optimal value of µ was ran-
domly selected from between 1e-2 and 1e-4. The σ
value was chosen randomly from between 0.1 and
3. On the other hand, for the CIFAR-100 dataset,
µ was randomly selected from between 1e-1 and
1e-2, while σ was chosen from the same range as
before, between 0.1 and 3.

The experiments involved 10 clients, each char-
acterized by different data characteristics. For ex-
ample, Client 0 had a small amount of data, while
Client 9 had a large amount. We partitioned the
validation loss into eight distinct octiles to examine
extreme scenarios where the validation loss is at
its lowest and highest points. In Figure1 and 2,
the color-coded graphs represented the loss rates,
where Q8 indicated the lowest validation loss (good
performance) and Q1 indicated the highest valida-
tion loss (poor performance).

In Figure1, focusing on Client 9 with the CIFAR-
10 dataset, we observed a higher concentration of
green dots (representing smaller validation loss)
towards the bottom compared to Client 0. This
suggests that Client 9 prefers a smaller mu, leading
to a smaller beta value, resulting in lower valida-
tion loss. This preference aligns with the fact that
Client 9 has a large amount of data, indicating less

https://github.com/daeun-j/CMSC828A.git
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reliance on high beta values.
In Figure2, examining Client 0 with the CIFAR-

100 dataset, we noticed a broader distribution of
blue dots (indicating lower validation loss) at larger
mu values. This indicates that due to larger mu, the
beta value increases, implying that the local model
of Client 0 is influenced by the global model. This
observation aligns with the fact that Client 0 has
a small amount of data, making it more reliant on
the global model for training.

Based on the results obtained from the six graphs,
we consistently observed that Q1 (represented by
black and red dots indicating high validation loss)
consistently appeared at the bottom (correspond-
ing to smaller mu values). This implies that all
clients exhibited a similar tendency of preferring
smaller mu values and smaller beta values. This
finding demonstrates that in the problem formula-
tion, smaller beta values correspond to personalized
training. Moreover, when clients prioritize person-
alization, there is a possibility of higher validation
loss.

5.4 Bayesian Optimization

To optimize the hyperparameters in our proposed
model, we utilized the hyperparameter values
found in Baseline 2 as a starting point. By leverag-
ing Bayesian optimization, we aimed to further en-
hance the performance of our model by fine-tuning
the values of alpha and beta.

First, we focused on finding the optimal value
for beta while keeping alpha fixed, following the
FedProx approach. Subsequently, we fixed the beta
value and searched for the optimal alpha value us-
ing the FedAvg approach.

Figure 3a illustrates the search for the optimal
beta values over time. The horizontal axis repre-
sents different beta values, while the vertical axis
represents the corresponding validation loss. The
graph shows the progression of the model’s perfor-
mance as it trains. Beta value for Client 0 is chosen
among 0.5-0.7 for its initial stability. Bayesian op-
timization is adaopted to online-learning scheme,
the models are trained as time goes by. To mini-
mize the effectiveness of overtime, we select the
best beta from the early stage of beta values.

Dataset α β

Cifar10 0.04 0.1-0.4(# data ↑) / 0.5-07(# data ↓)
Cifar100 0.05 0.01-0.02(# data ↑) / 0.06-0.08(# data ↓)

Table 1: Optimized hyper-parameters (α, β) for each dataset

(a) Client 0 (400 training
data)

(b) Client 9 (1200 training
data)

Figure 3: Bayesian optimization on β

(a) Cifar 10 (b) Cifar 100

Figure 4: Bayesian optimization on α

Observations from the graph revealed that a
higher beta value for Client 0, which had a smaller
dataset, led to a lower validation loss, indicating
that prioritizing the global model over personal-
ized models yielded better results. Conversely,
for clients with larger datasets, in Figure 3b, a
lower beta value resulted in improved performance.
This observation aligns with the FedProx approach,
where the weighting of personalized models is ad-
justed based on the amount of data available.

Figure 4 shows the alpha values used for CIFAR-
10 and CIFAR-100. The alpha value was deter-
mined at the point where the validation loss expe-
rienced a sudden drop. This substantial decrease
indicated a significant improvement in the model’s
performance and was considered the optimal alpha
value for the respective dataset. The final optimal
α and β values are summarised on Table 1.

5.5 Stochastic Gradient Methods

SGD updates the parameters using only a single
training instance in each iteration. This method
provides fast convergence with noisy estimates of



Methods Test Acc(Cifar10) Test Acc(Cifar100) Training Time (Cifar10) Training Time (Cifar100) Big (O)
(Baseline 1) 31.826 27.602 5’47” 5’46” O(kn2)

FedAvg (Baseline 2) 74.69 43.02 41’08” 44’05” O(Mkn2)
FedProx (Baseline 2) 74.60 46.36 45’44” 46’15’ O(Mkn2)

SGD 75.71 52.72 142’32” 144’43” O(kn2)
Random Search 73.69 52.30 360’52” 180’27” O(nlogn)

Bayesian Optimization 75.11 53.02 121’43” 144’45” O(n2d2)

Table 2: Performance comparison of our algorithm using hyper-parameter search methods

the error gradient. The result obtained by differenti-
ating the objective function shows that β and α are
continuously calculated over time. We omitted the
differentiation equation of the objective function,
including validation loss. SGD method searches
hyperparameters alternatively.

5.6 Results and Analysis

To evaluate the performance of our proposed model,
we compared it against the FedAvg and FedProx
methods, as well as a baseline local SGD as shown
in Figure 5. Results showed that our model demon-
strated significant improvements in terms of per-
formance for CIFAR-100 dataset. However, it is
important to note that Bayesian optimization and
SGD methods achieved higher test accuracy for
both CIFAR-10 and CIFAR-100 datasets. Fed-
erated learning yields superior performance com-
pared to local SGD, highlighting the advantages of
client involvement in FL. This observation suggests
that while our proposed model showed promise in
enhancing the performance of federated learning,
further exploration and optimization may be re-
quired to achieve better results for CIFAR-10.

Time complexity for each algorithm is shown
in Table 2. In the case of SGD, it shows a fairly
high complexity, because time complexity highly
depend on updating hyperparameters and training
with the meta-learning method such as validation
evaluation. Bayesian optimization can be con-
trolled by determining the number of searching
points. n is the number of samples on which the
surrogate function is evaluated and d is the number
of hyperparameters. We set n = 3, d = 20. If we in-
crease n higher to ensure that the variance is small,
the time complexity will increase quadratic.

To compare the time complexity with local SGD,
where k is the number of features and n is the total
number of data points, the FedAvg, and FedProx
follows the local SGD with multiplying the global
rounds M .

6 Limitations

When we utilized random search with a Gaussian
distribution, we observed a significant disparity in
accuracy between the model’s performance on the
CIFAR-10 and CIFAR-100 datasets. This finding
suggests that our model requires further general-
ization, achieved through the use of more diverse
datasets. Moreover, it was challenging to identify
any clear preference for specific beta values among
clients based on the validation loss alone. As a
result, we decided to divide the validation loss into
eight partitions instead of four. By doing so, we aim
to enhance the visibility of distinct beta values that
are favored by different clients. To achieve this, we
plan to amplify the differences in the datasets uti-
lized by each client, allowing for more pronounced
variations in the validation loss.

Given that we utilized 10 clients, we had to ob-
tain 20 hyperparameters. It would have been prefer-
able to employ multi-parameter search methods for
this task. Moreover, it is believed that better results
could have been achieved if the search had been
conducted with a larger number of samples. Even
after training conducted, the hyperparameters still
shows considerably high variance. Additionally,
while we opted for the online search method, it is
crucial to consider whether this approach is suit-

Figure 5: Test accuracy comparison to our methods on
Cifar10 and Cifar100



able for federated learning. Bayesian optimization
is appropriate for determining the β value when fo-
cusing solely on the client’s perspective. However,
it is considered which scheme is better between
repeatedly learning both the α and β values and
to alternatively learning after searching for the α
value with the optimized β and then fixing it.

We examine our method under limited FL set-
ting, such as IID-setting with full-participation. As
each client possesses a distinct data distribution,
the requirement for selecting a more granular β be-
comes more pronounced. To create a more realistic
FL setting, adjusting the number of participants,
we anticipate that the server will become more sen-
sitive to the choice of model using α. Furthermore,
future research directions will encompass explor-
ing the security and privacy aspects, which are
inherent advantages of FL, as well as investigating
mathematical convergence proofs.

7 Conclusion

In conclusion, our study has demonstrated the supe-
rior performance of our novel algorithm. This algo-
rithm, which ingeniously combines the FedAvg and
FedProx methods while simultaneously optimizing
hyperparameters, has outpaced the performance
of the individually tuned FedAvg and FedProx ap-
proaches within the context of federated learning.
The comparative performance advantages of our
algorithm over traditional methods are clearly il-
lustrated in Figure 5. The results aligned with
our expectations and provided strong evidence for
the effectiveness of our approach. These findings
highlight the potential of our algorithm to address
challenges in federated learning and improve over-
all performance, although further exploration is
needed to enhance its performance across different
datasets.
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