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Abstract  

It is difficult for non-experts to build machine learning (ML) models at the level that satisfies their needs. 

Deep learning models are even more challenging because it is unclear how to improve the model, and a trial-

and-error approach is not feasible since training these models are time-consuming. To assist these novice 

users, we examined how interactive and explainable feedback while training a deep learning network can 

contribute to model performance and users’ satisfaction, focusing on the data preparation process. We 

conducted a user study with 31 participants without expertise, where they were asked to improve the accuracy 

of a deep learning model, varying feedback conditions. While no significant performance gain was observed, 

we identified potential barriers during the process and found that interactive and explainable feedback provide 

complementary benefits for improving users’ understanding of ML. We conclude with implications for 

designing an interface for building ML models for novice users. 
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1. Introduction 

Studies have shown that it is not straightforward for nonexperts to build ML models without prior knowledge 

[1, 2] and that they cannot build ML models in an efficient way [3, 4]. For instance, Yang et al. [4] conducted 

an interview study to understand how non-experts build ML solutions for themselves in real life and revealed 

several pitfalls. The major problem was that non-experts rarely tried to understand the internal mechanism of 

learning algorithms, hence had trouble improving the performance or even gave up their tasks. Also, most of 

them did not consider the overfitting problem, ending up having poor accuracy on a new dataset. 

Based on these observations, researchers have worked on a variety of approaches to assist non-experts with 

building ML models. One of them is to provide interactivity in the user interface [5-7]. For example, Amershi 

et al. [5] showed that adopting interactive feedback while training an ML system enables people to use it 

naturally when training ML models and improves the quality of users’ models. Also, Fiebrink et al. [7] found 
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that with an interactive ML system, users not only made relevant judgments on evaluating their models to 

improve the trained models but also learned what types of models are easy to build and used this information 

to modify their trained models. Others showed that providing explanations on how ML systems operate can 

help users to build mental models quickly [1, 2, 8]. Kulesza et al. [2], for example, provided users a music 

recommender with a tutorial discussing how the recommender works and how various feedback controls would 

affect. As a result, participants responded positively to learning details about the system, and they were more 

satisfied with the recommender’s output. Likewise, Hitron et al. [8] uncovered the process of ML system to 

children and discovered that this enhanced children’s understanding of basic ML concepts. Kulesza et al. [1] 

also built a text classification tool that provides explainable feedback to participants, which increased their 

understanding of the ML system and allowed them to correct the system’s wrong results (e.g., and improve the 

model performance by adjusting importance of features (words) with incorrect weight for labels) with fewer 

actions than participants using a traditional learning tool. While these studies found that interactive and 

explainable feedback are effective for nonexpert users who wish to train ML models, none of them explored 

how to provide appropriate feedback to novice users without expertise when building deep learning models, 

which is much more challenging because it is difficult to generate explanations on why the model behaves in 

a certain way, compared to traditional machine learning model. Moreover, it is not feasible to provide 

immediate feedback due to its extremely long training time. 

To assess the effectiveness of interactive and explainable feedback when building a deep learning model for 

novice users, we conducted a user study with 31 participants who have no expert knowledge in ML, focusing 

on data preparation process where they were asked to refine the training dataset to improve the accuracy of an 

image-based dog breed classification model with and without interactive and explainable feedback. Based on 

the analysis of the accuracy of models built by our participants and their subjective responses, we confirmed 

that participants were able to improve the model performance similar to the accuracy achieved by experts. 

Although there was no significant difference across different feedback conditions, findings revealed that 

participants’ understanding of building ML models increased the most when both interactive and explainable 

feedback were provided.  

The contributions of this work are: (i) the assessment of how adopting interactive and explainable feedback 

during data preparation help improving people’s understanding of ML systems, and (ii) the identification of 

the potential barriers of building ML models for non-experts. 

 

2. Related Work 

2.1 Interactive Feedback for Building ML Models 

Since Fails and Olsen [9] first introduced the term interactive machine learning, which introduced iterative 

cycles help users quickly correct the result by giving feedback back to the system, many researchers have 

proposed interactive ML systems for creating ML models based on user feedback [5, 7, 8, 10-13, 29-30]. For 

example, Fogarty et al. [12] proposed CueFlik that provides users with best- and worst-matching examples 

that enable users to assess the quality of the model quickly so that they can build better models, rather than 

simply presenting the results of all data as in traditional machine learning. Likewise, Fiebrink et al. [7] found 

that iterative training of an ML model helps users to make relevant judgments on evaluating their models and 

achieve better performance as a result. Moreover, they found that the most frequently observed behavior for 

improving the model performance was modifying their training set among changing the features, learning 

parameters of an algorithm, or the algorithm itself. Inspired by the finding that interactive feedback in training 

ML models allows users to quickly examine the impact of their actions and adapt subsequent inputs to obtain 
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desired behavior [14], we examine the effectiveness of providing interactivity (i.e., rapid updates) for assisting 

non-expert users with building ML system by presenting the effect of their behavior so that users can make 

appropriate adjustment in the next cycle. 

 

2.2 Explaining the Performance of ML Models 

  Another approach many researchers have explored for assisting non-experts in building ML models is 

uncovering the process of training or outcomes of an ML system with explanations [1, 2, 8, 15] presented in 

forms that are easy to understand for human, which is called explainable machine learning [16]. In gesture 

recognition, for instance, Hitron et al. [8] discovered that children’s understanding of the basic concepts of 

ML, such as sample size and sample versatility, can be improved when they performed data labeling and model 

evaluation tasks for training the ML system. In the field of image recognition, methods for medical decision 

making have been studied with explainable AI [17-19, 27-28]. EluciDebug [1], another example for text data, 

was proposed as a system that introduces explanatory debugging to give users an explanation of how 

predictions were made. They confirmed that their participants could correct the system’s mistakes, and the 

improvement of model accuracy was doubled at most compared to the accuracy when using a traditional 

learning system. However, studies [1, 8, 20] have investigated how interactive and explainable feedback work 

together in affecting end-users for building deep learning models, not how each feedback affect. Moreover, 

the barriers non-experts face when building their deep learning models have not been thoroughly enough 

discussed. Similar to EluciDebug, our goal is to examine how explainability during ML model training can 

benefit non-experts for constructing robust deep learning models while preventing overfitting problems. 

 

3. User Study 

To investigate the effectiveness of interactivity and explainability and to identify potential barriers that non-

experts would experience while building their ML systems, we conducted a study with 31 participants who 

had little or no ML-related experience where they were asked to use our custom user interface designed for 

this study to train an image-based ML model. All of them were compensated for their participation. 

 

3.1 Experimental Conditions 

We had four conditions for this study varying types of feedback (i.e., interactive and explainable feedback) 

provided to users, as shown in Table 1. Interactive feedback allows users to interactively examine the effect of 

their current decision, and help them to refine their dataset for the next training phase. It includes two features: 

red-bordered box and interactive box. The red-bordered box was designed to inform misclassified images to 

users by having a bounding box with red borderlines (see Figure 1b1). Meanwhile, the interactive box shows 

the classification result with confidences of the current ML model instantly for a selected image, as shown in 

Figure 1c1 (e.g., 100.00% Yorkshire, 0.00% Bulldog, and 0.00% Labrador).  

 

Table 1. Types of feedback provided for each of the four conditions examined in this study. 
 

Feedback Condition Default Interactive Explainable Full 

Interactive no yes no yes 

Explainable no no yes yes 

 

On the other hand, explainable feedback was designed to provide explanations of how predicted results are 

generated by the current model in understandable forms to novices. It consists of three features: activation map, 
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confidence table, and model description. The activation map was introduced to make Convolutional Neural 

Network (CNN)-based models more explainable as it visualizes the areas of input that are important for 

predictions as proposed in [21]. As shown in Figure 1c2, this map shows how an image is evaluated in the pre-

trained ImageNet model [22]. The image in Figure 1c2 is highlighted on the face of a dog even though the dog 

and a person are together, suggesting that the current model recognized the image as a dog. The confidence 

table, on the other hand, informs users about Top 5 recognition results with the highest confidences based on 

the same model (see Figure 1c3) to convey the estimated performance of their model. Lastly, the model 

description is provided after users train their model — it specifies the number of misclassified images in each 

class. 

 

 
 

Figure 1. A screenshot example of the user interface for one of the feedback condition (full) 

custom-built for this study when the first image is selected. It supports data preparation for 

building a deep learning model by allowing participants to (a) import data for each of the 

predefined classes, (b) review uploaded images per class, and (c) receive estimated results 

per image before starting the actual training. Red labels indicate different feedback 

features: (b1) red-bordered box, (c1) interactive box, (c2) activation map, and (c3) 

confidence table. 

 

3.2 Participants 

We recruited participants through a local online community, university board, and word of mouth. Thirty-

four participants applied, but two were excluded as they reported had studied AI or ML before or have worked 

on related projects (6 or 7 in Table 2) as our target participants were people who are non-experts in ML. The 

rest 32 participants were distributed between 1 and 5 (see Table 2) and reported 2.3 on average. Table 3 shows 

the demographics of 31 participants after removing one outlier, where the accuracy performance of the model 

that the participant built was beyond 3 standard deviations of the mean, throughout the study. Their age range 
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was between 18 to 56, and each participant was randomly assigned to one of the four conditions. 

 

3.3 Apparatus 

To observe how non-experts create ML systems, we implemented a web-based system that allows users to 

iteratively import, review, refine the training dataset, and evaluate their trained models to build a deep learning 

network for image classification. We designed the interface with a focus on data labeling and model evaluation 

out of the four building blocks of ML mentioned by Meng et al. [23], that were found to be more accessible to 

and less complicated for novices than other two blocks (i.e., extracting features or selecting models). 

 

Table 2. Descriptions for collecting prior knowledge of AI or ML on a 7-point scale. 
 

Score Description 

7 I can build AI or ML systems. 

6 I have studied AI or ML through lectures or books. 

5 I can explain in an abstract way how AI or ML works. 

4 I can list examples of AI or ML applications. 

3 I know the definition of the terms. 

2 I have heard of the terms, but I know them as superficial. 

1 I have never heard of the terms AI and ML. 

 

Table 3. Participants’ gender distribution, average age, and their prior knowledge about ML 

per condition. Standard deviations are presented in parenthesis. 
 

Condition Gender Age ML-Knowledge 

Default (D1-D8) 3 M, 5 F 24.2 (4.4) 2.1 (1.4) 

Interactive (I1-I7) 3 M, 4 F 24.6 (4.5) 2.9 (1.2) 

Explainable (E1-E8) 3 M, 5 F 26.4 (12.3) 1.9 (0.6) 

Full (F1-F8) 4 M, 4 F 25.8 (7.6) 2.5 (0.8) 

 

Our apparatus consists of two ML models; the primary is MobileNetV2 [24] that is retrainable and 

additionally VGG16 [25]. We used MobileNetV2 as the primary model and applied transfer learning to create 

image classifiers and generate feedback as quickly as possible by training only a part of the pre-built ML model 

with smaller number of classes — we trained only the top-layer of MobileNetV2, and the classes we used were 

Bulldog, Yorkshire, and Labrador, which were selected from 1,000 different object classes on ImageNet [22]; 

training only the top-layer of MobileNetV2 model with modified dataset took 5-10 seconds and the accuracy 

result of the model was updated in real-time. Using this model, we implemented the interactive box, red-

bordered box, and model description features. We also had another VGG16 model to visualize the activation 

map and show the confidence table since generating the activation map is time-consuming (50-60 seconds per 

image). While the MobileNetV2 model for providing interactive feedback was updated every time the model 

gets re-trained, parameters for VGG16 were pre-trained to shorten the time taken to train the model and 

produce an activation map and a confidence table. To train these two models, we used four Intel Skylake 

processors, 15GB memory and NVIDIA Tesla K80 GPU for hardware, and used Python 3.7 with Tensorflow 

for implementation. 
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3.4 Procedure 

The study was conducted as a one-hour single-session study consisting of a pretest, a data preparation task 

for building a deep learning model, and a posttest followed by an interview. As a between-subject test, 

participants were assigned to one of the four conditions for the data preparation task. Participants’ demographic 

information and their prior knowledge about artificial intelligence and ML on a 7-point scale were collected at 

the beginning of the study. 

Pretest. Before performing the data preparation task for building a model, we presented two ML application 

scenarios (i.e., image classification, speech recognition), and asked participants to explain what kind of dataset 

would be needed to make such ML systems with high accuracy for each. 

Data Preparation Task. For the main task, we first played video tutorials that explain the basic concepts 

of ML such as definitions of ML and class in a classification problem, the difference between training and test 

data, and how the accuracy of an ML model is calculated as well as the instructions on how to use our custom 

interface for performing the task. Before performing the actual task, participants were allowed to ask questions, 

if any. Then they were given 3 minutes to explore the interface themselves, such as importing and deleting 

images and training a model. After this brief introduction, participants were instructed to add or remove images 

per class using the web interface to improve the accuracy of the initial model as high as possible within 30 

minutes. They were allowed to train and check the current model’s accuracy up to three times, which can be 

done by clicking the "Training" button on the top right of the interface (see Figure 1). Once the training is 

completed, participants were able to check the results such as training accuracy and validation accuracy on a 

new page. To understand participants’ mental model, we used a think-aloud protocol throughout the task and 

collected participants’ feedback before and after checking the training results by asking how they prepared 

their data and what they think about the results. 

Posttest and Interview. After the task completion, we had a posttest session where we asked participants 

the same questions again with the two scenarios from our pretest to examine if participants’ understanding of 

ML systems has improved after performing our task. Then we had a wrap-up interview to understand the 

potential barriers for preparing a dataset for an ML model and how the presented interactive or explainable 

feedback can be used to ease the training process. We also asked participants about their satisfaction, 

usefulness, the difficulty of each feature they used as well as perceived task load (NASA-TLX) [26] on a 7-

point scale. 

 

4. Findings 

Here we present the potential effects of interactive and explainable feedback in terms of accuracy, the 

understanding of ML, and subjective responses collected from participants for each feedback feature. 

 

4.1 The Impacts of Feedback Conditions on Model Accuracy 

To investigate to what extent participants can improve the accuracy of their models with and without 

interactive and explainable feedback, we assessed both leave-one-out (LOO) validation accuracy, where 10% 

randomly selected images from the entire data were used for testing and the rest 90% for training, and advanced 

validation accuracy, where the test data were composed of 15 images, 5 for each class, selected by researchers 

with the intention to include images that are difficult to classify accurately, as shown in Figure 2. Training 

accuracy results were mostly 100% and thus excluded in the analysis. The results are shown in Figure 3 and 

Figure 4, and each refers to the highest accuracy achieved during the task. 

Initial vs. Best Accuracy. The LOO validation accuracy was compared with the accuracy of the initial 

model trained with the default dataset at the beginning of the task to confirm if non-expert users can improve 
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the performance of an ML model with and without interactive or explainable feedback. As a result, we found 

that the average accuracy of the model was increased across all conditions compared to that of the initial model; 

the LOO validation accuracy increased by about 35% on average ranged from 32.0% to 36.6%. Likewise, the 

advanced validation accuracy was also increased up to 19.1%, with a minimum of 16.0%. The differences 

between the initial accuracy and the best accuracy were found to be statistically significant with paired t-tests 

for both LOO validation accuracy and advanced validation accuracy (p < .001 for all, except for advanced 

validation accuracy for full condition where p = .03). While we expected to observe the effects of feedback 

conditions on model performance, no significant difference was found with one-way ANOVA tests. 

 

 
 

Figure 2. Fifteen test images used for computing advanced validation accuracy for each 

class. 

 

 
 

Figure 3. Average LOO validation accuracy of models trained by participants (novice) and 

experts per condition compared to the LOO validation accuracy of the initial model (56.7%) 

for all conditions. Error bars indicate standard deviations. 

 

Experts vs. Novice. In addition, as a secondary analysis, we recruited three ML experts who had either 

taken ML courses or worked on an ML project to confirm the upper limit of the model’s accuracy. Each of 

them was asked to train ML models with all four conditions where the presented order was randomized. Paired 

t-tests with Bonferroni corrections comparing the accuracy of experts’ models and that of participants’ model 

revealed that the best accuracy achieved by novice participants was not that significantly lower than that by 
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experts. 

 

 
 

Figure 4. Average advanced validation accuracy of the initial model (37.7%) and models 

trained by participants (novice) and experts per condition. Error bars indicate standard 

deviations. 

 

4.2 The Understanding of Building a Better ML Model 

To examine if participants’ understanding of constructing ML models has been improved after performing 

the task, one researcher graded participants’ pretest and posttest responses where the participants’ group was 

blinded. For each scenario per test, responses of participants were given a score between 0 and 4 depending 

on how much they are aware of the fact that increasing volume and variety of training data can help to improve 

the accuracy (2 scores each per metric). The maximum score a participant could get from a test was 4 (2 metrics 

× 2 points). The metric of volume, for instance, a participant would receive 0 score if they did not mention 

about increasing the number of training images at all, 1 if the participant mentioned the concept of the quantity 

of the training data vaguely, and 2 if the concept is clearly explained. As a result, we found that participants’ 

understanding of how data should be prepared to improve the accuracy of an ML model has been improved 

for all conditions, as shown in Figure 5. Participants in full condition showed the biggest improvements on 

average, followed by explainable, default, and interactive conditions. Unlike the model accuracy, the 

difference between pretest and posttest scores were found to be statistically significant with Wilcoxon Signed 

Rank tests for full and explainable conditions (p = .027 and .020, respectively). Interestingly, while the 

performed task is about image classification, the scores suggest that building an image classification model 

can also help to deepen the understanding of the speech recognition model. 

 

4.3 The Use and Subjective Assessments of Feedback Features 

We further assessed how each feature for each feedback type assisted participants in preparing a dataset for 

building ML models by analyzing participants’ subjective feedback such as contribution (i.e., how much this 

feature has contributed to their decision when preparing the data) and usefulness at the end of the study; see 

Figure 6. In addition, we asked them to vote for the type of feedback that helped them the most when 

performing the task (see Figure 7) and their reasons. 

Red-bordered box. While the difference between red-bordered box and interactive box was not significant 

in terms of subjective ratings, this feature was considered to be most helpful for improving the model accuracy 

by 7 participants out of 15 across two conditions who had the access to this feature; all participants except one 

(I4) from interactive condition and one participant (F5) from full condition. Some participants (I2, I4, I6, F5) 

mentioned that this feature was intuitive since it lets them know which images were misclassified. Related, 



98  U nderstanding Interactive and Explainable Feedback for Supporting Non-Experts with Data Preparation for Building a Deep Learning Model    
 

half of the participants from default condition (N = 4 out of 8) wished to know which images are good or bad 

efficiently as they found it tedious to check every image to understand why the accuracy was dropped or 

increased after training. D3 said, "If a person has to check every image when adding data, it would be very 

hard to check all of them when there is a lot of data." Similarly, I2 said that the red-bordered box was helpful 

in finding problematic images quickly and saving time as a result. Indeed, we observed that more than half of 

the participants (N = 8) deleted the images quickly as soon as they saw red-bordered images without a second 

thought. Yet, other 5 participants tried to understand why some images were misclassified and deleted them if 

they thought the images were inappropriate for training, and the rest two ignored the flagged images and 

continued refining other data instead, hoping it would help to improve the accuracy. 

 
 

Figure 5. Average pretest and posttest scores per condition for both image classification 

and speech recognition where maximum score is 4. Error bars indicate standard deviations. 

 
 

Figure 6. Average assessment of various types of (a) interactive and (b) explainable 

feedback per condition on contribution, usefulness, and credibility, where 7 is best. Error 

bars indicate standard deviations. 

 

Interactive Box. Only 4 out of 15 participants considered the interactive box was the most helpful feedback 

as they could check quantified results on how each image has been classified with a confidence score in 

percentages generated from the model. When participants were asked if they prioritized their own judgment 

over the provided feedback or vice versa, 3 participants from interactive condition (I2, I4, I7) and four from 

full condition (F1, F2, F3, F5) responded that they fully trusted the information in the box and adjusted their 

dataset accordingly. However, some (I1, F7, F8) used it as a reference for making their own judgments on if 

the selected image is good, while other four (I3, I5, F4, F6) did not use it at all since the presented information 
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was the result based on the last-trained model, or because they were busy looking at information generated by 

other features. The subjective ratings were almost the same for both interactive and full conditions, as shown 

in Figure 6a.  

Activation Map. Three full participants utilized the activation map to interpret training results (F2, F7, F8). 

For example, F2 said, "If the map highlights a person in the image, not the dog, then I assumed that having a 

person in an image caused misclassification results." Participants from full condition gave higher ratings than 

those from explainable condition in general (Figure 6b); the difference was significant for credibility (U = 6.5, 

p = .004) with Mann-Whitney U tests. Three explainable participants (E1, E3, E6) replied that they did not 

refer to the map at all. E3 described, "I was able to perform the task without having to look at the image 

(activation map) because I’ve got accurate numbers from the (confidence) table." 

Confidence Table. The confidence table was evaluated significantly higher for contribution, usefulness 

and credibility for explainable condition than those for full condition (N = 8 each) (see Figure 6b) with Mann-

Whitney U tests (U = 12.0, 14.0, 7.5; p = .014, .025, .003, respectively). As shown in Figure 7, the majority of 

explainable participants (N = 6 out of 8) reported that they used the table the most as they can choose images 

if and only if its the object with the highest confidence is similar to the desired label (class name) along with 

its confidence value or if the desired label is ranked high. E6, for example, deleted images that showed 

confidence below 60% in the table. On the other hand, full participants, who also had access to interactive 

feedback, reported that they did not care much about the activation map nor the confidence table because these 

feedback were the results of pre-trained ML model for a quick preview which does not affect their model, and 

thus they felt the feedback was irrelevant to their model. 

Model Description. Six participants reported that the model description, which informs users about the 

number of misclassified images per class, was helpful as it guided them in which class they should pay attention 

to when refining their dataset. For example, if the description notified that many Labrador images were 

misclassified, participants would mainly focus on improving the dataset of this class by removing problematic 

images and/or adding new Labrador images. We observed that full participants tend to use this feature with 

the red-bordered box; they first read the descriptions to understand which class they have misclassified images 

and then used the red-bordered box to handle those images. On the other hand, one participant (F7) rarely read 

the description because he could examine misclassified images directly using the red bordered box. 

 

 
 

Figure 7. Vote counts for the feature that affected the task performance the most. 

 

4.4 Perceived Task Loads and Observed Behaviors of Novices 

Perceived Task Load. We used NASA-TLX questionnaires [26] to assess participants’ perceived task load 

for performing the task of building an image classifier, and the result is shown in Figure 8. Similar to the model 
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accuracy, the responses were not significantly different across conditions when tested with one-way ANOVA. 

Also, when compared to the responses collected from experts, we have confirmed that mental demand is 

slightly higher for participants. On the other hand, other responses were similar, including effort. This suggests 

that novice users’ perceived task load is not too different from experts except for mental demand. 

 

 
 

Figure 8. Average NASA-TLX (7-scale) for all four conditions, where 1 means low and 7 

means high for all metrics except for performance, where 1 means good and 7 means poor. 

Error bars indicated standard deviations. 

 

Amount of Data Novices Prepared. The number of images that participants used for training varied. More 

than half of the participants started with 20-40 images per class and maintained the number throughout the 

task (N = 17) while the other 6 participants gradually increase or decrease the number of training data. This is 

contrary to the behavior of experts who started training the model with a large volume of data. In the study, 

only the remaining eight added images as many as possible from the start, assuming that adding many images 

would increase the accuracy, especially for F8, who related the performance with the word ‘big data.’ 

Tendency to Over-clean the Data. To understand users’ mental models, we observed how participants 

built their ML models while they are performing the task. As a result, we found that participants had a tendency 

to clean the data as much as possible without knowing that this can cause an overfitting problem. To be specific, 

participants tended to remove images if dogs with different breeds or people are included for the selected class 

even if the correct dog is present. This behavior was more frequently observed from the participants in default 

condition, which had the minimum feedback without interactive nor explainable feedback. Moreover, when 

adding new pictures, most participants added images if and only if the images are representative of that class, 

such as images where the frontal face of a single dog with the correct breed is visible. This indicates that non-

expert users believe that having only the representative data can lead to higher accuracy without knowing that 

their model would not perform well on real-world data with large variations (noises). 
 

5. Discussion 

5.1 Discrepancy Between Understanding of ML and Accuracy 

Although we could not confirm if interactive and explainable feedback help increase the accuracy, the 

difference between the pretest and posttest scores suggests that the understanding of constructing better ML 

systems increases with explainable feedback (with or without interactive feedback). In other words, despite 

the increase in understanding of building better ML models the model performance showed no significant 

difference between conditions. This could be due to how the pre-trained model (MobileNetV2) was trained. 



International Journal of Advanced Smart Convergence Vol.9 No.2 90-104 (2020)                                   101                                 

 

That is, as a transfer learning model, it is already well-trained so that it is not too difficult to improve the 

accuracy of the model by making modifications to the dataset regardless of the feedback conditions. Another 

possible explanation could be related to the choice of our task, which consists of data preparation and model 

evaluation. As these are relatively easy for novice users compared to the other two blocks of building a model 

— feature extraction and model selection [23], the feedback we provided might not have helped as expected. 

Further studies are needed to examine which feedback types are needed to support each block of an ML model 

building process. 

 

5.2 Understanding of the Volume and Variety of Training Data 

While all of the experts used almost all of the available training data, only about 25% of the participants 

attempted to do the same across conditions. Instead, most of the participants showed a pattern of keeping the 

number of images similar to the initial state when preparing a dataset for training an ML model. We also 

identified that the most frequent and popular ways to improve the accuracy among novices during the data 

preparation process for building ML models are filtering out misclassified images (e.g., deleting misclassified 

images that are classified as Labrador in a Bulldog class) and correctly classified images but with low 

confidence rather than including diverse images. This may be due to a lack of understanding that training with 

a large number of images with varieties can increase the accuracy of their model. 

 

5.3 Trade-offs Between Feedback Types 

Our findings imply that there are trade-offs between interactive feedback and explainable feedback. While 

interactive feedback has the advantage of providing immediate feedback to users, explainable feedback was 

found to be more beneficial for deepening users’ understanding of building a better ML system. In addition, 

based on participants’ use of both model description and red-bordered box, findings revealed that these two 

feedback can be complementary to one another. For instance, after training, users can read the model 

description to find the most problematic class and then use the red-bordered box to remove unwanted images 

within that class. Also, reviewing the activation map allows users to explore what features of images are 

considered as important so that they can try adding a more variety of data, which would help to prevent 

overfitting problems. For this reason, it may be desirable to provide both interactive and explainable feedback 

for users so that users can selectively utilize different feedback as needed. 

 

5.4 Non-Experts’ Misconceptions of Machine Learning Models 

Many participants seemed to form their mental model of ML models for achieving high accuracy by 

checking how the modifications they made to their dataset changed the accuracy. However, before or during 

the process, we have observed participants’ misconceptions related to ML, believing that their certain behavior 

was crucial in increasing accuracy while it might not be the main reason. For example, several participants 

added many images where the frontal face of a dog is clearly visible and believed that this is the main reason 

for the accuracy improvements while other behaviors they performed such as deleting wrong-labeled images 

(e.g., Bulldog image in Labrador class) could have a greater impact on the accuracy of their model. Without 

knowing exactly how to increase the accuracy, users may be led to believe that the consequences of their 

attempts are random or in misconceptions. Thus, it is essential to guide novices with proper feedback for 

improving the accuracy of ML models [4]. 

 

5.5 Risk of Providing Incomplete Feedback to Novice Users 

In our study, non-expert participants tended to delete misclassified images without a doubt, assuming that 
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the feedback is always correct when it is only presenting the information based on estimated results, which 

could be wrong. Classifying dog breeds will not be a big problem if non-experts follow the system’s wrong 

recommendation without confirmation, but it might be even dangerous in the case where accurate judgment is 

required, such as a medical decision. Thus, since non-experts may tend to over-trust ML system’s feedback, it 

might be better not to provide feedback to non-experts with a warning that the feedback should be considered 

as a reference or a suggestion. Moreover, considering full participants’ tendency to focus on single feedback 

that is perceived to be intuitive (i.e., red-bordered box) even when single/multiple feedback with rich 

information is provided such as relying more on red-bordered box although activation map provides more 

details, a system can also guide users to examine and utilize the multiple feedback provided with various 

aspects make their own judgment. 

 

5.6 Feasibility of Providing Feedback for Educational Purpose 

Our results showed that the understanding of ML concepts has increased with explainable feedback not 

only with image data but also with speech data. This suggests that a user interface for training a machine 

learning model with interactive and explainable feedback can also be used as an educational tool to convey the 

concept of ML with different types of data to users by doing. Considering that our participants felt that 

preparing the data for training a machine learning model was mentally demanding, providing appropriate 

guidance with feedback can also help users to learn how different quantities and variations of a dataset can 

affect the overall accuracy of their model as they go through the process. 
 

6. Conclusion and Future Work 

To support people with no expertise in ML for constructing deep learning models in the data preparation 

process, we provided interactive and explainable feedback to assist with the process. Based on the analysis of 

31 participants’ data collected from the user studies, we found that interactive and explainable feedback can 

help novice users to improve the accuracy of the model without having a significant gap compared to the 

accuracy trained by experts. Findings also revealed that interactive and explainable feedback are 

complementary to each other in increasing the understanding of constructing better ML models. Finally, we 

gained insights into how people map out their strategy to prepare their training data for their machine learning 

models, and what barriers they go through.  

We hoped to continue exploring various feedback types to identify the most effective way to guide novice 

users for each of the phases for building a deep machine learning model in real-time with a larger sample size 

and longer exposure of the system. Based on the identified potential benefits and barriers of our feedback, we 

plan to extend our work to support various data types as well as more complex configuration of deep learning 

networks as future work. 
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